Antiproximinal sets in the Banach space c(X)

نویسنده

  • S. Cobzaş
چکیده

If X is a Banach space then the Banach space c(X) of all X-valued convergent sequences contains a nonvoid bounded closed convex body V such that no point in C(X) \ V has a nearest point in V .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiproximinal Norms in Banach Spaces

We prove that every Banach space containing a complemented copy of c0 has an antiproximinal body for a suitable norm. If, in addition, the space is separable, there is a pair of antiproximinal norms. In particular, in a separable polyhedral space X, the set of all (equivalent) norms on X having an isomorphic antiproximinal norm is dense. In contrast, it is shown that there are no antiproximinal...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

On Polar Cones and Differentiability in Reflexive Banach Spaces

Let $X$ be a  Banach  space, $Csubset X$  be  a  closed  convex  set  included  in  a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a  bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set  $C$,  so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

On the maximal ideal space of extended polynomial and rational uniform algebras

Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010